پیش بینی قیمت هفتگی نفت خام از طریق مدل ترکیبی ماشین بردار پشتیبان و خودرگرسیو میانگین متحرک انباشته

Authors

شاپور محمدی

دانشیار، مدیریت مالی، دانشگاه تهران، دانشکده ی مدیریت رضا راعی

استاد، مدیریت مالی، دانشگاه تهران، دانشکده ی مدیریت حسین کرمی

کارشناسی ارشد، مدیریت مالی، دانشگاه تهران، دانشکده ی مدیریت (مسئول مکاتبات)

abstract

همواره پیش­بینی روند قیمت و نوسانات یکی از چالش­های پیش­روی معامله­گران در بازارهای بورس نفت بوده و پیش­بینی قیمت­ها به عنوان یک امر ضروری وکاربردی مطرح می­شود ولیکن باید پیش­بینی را مورد توجه قرار داد که با دقت بیشتری صورت گیرد و نسبت به نتایج واقعی مشاهده شده خطای کمتری داشته باشد. به منظور پیش­بینی قیمت هفتگی نفت خام برنت به عنوان یک نفت شاخص با توجه به دشوار بودن شناسایی دقیق الگو­های خطی و غیرخطی در سری­های زمانی اقتصادی و مالی از ترکیب مدل­های خودرگرسیو میانگین متحرک انباشته(arima) با این پیش فرض که سری­زمانی دارای الگوی خطی می­باشد و ماشین بردار پشتیبان(svm)که توانایی بالایی در مدل­سازی الگو­های غیرخطی دارد به منظور افزایش دقت پیش­بینی استفاده شده است. با توجه به آزمون مقایسه زوجی معیارهای ارزیابی عملکرد ریشه میانگین مجذور خطا(rmse) و میانگین قدرمطلق درصد خطا(mape) که حاصل مقادیر پیش بینی شده و مقادیر واقعی هر یک از مدل­ها هستند، نتایج بیانگر این موضوع بودند که در بیشتر موارد مدل ترکیبی خطای کمتری در پیش بینی قیمت نفت خام نسبت به کاربرد مجزای مدل­های خودرگرسیو میانگین متحرک انباشته و ماشین بردار پشتیبان دارد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی قیمت هفتگی نفت خام از طریق مدل ترکیبی ماشین بردار پشتیبان و خودرگرسیو میانگین متحرک انباشته

همواره پیش­بینی روند قیمت و نوسانات یکی از چالش­های پیش­روی معامله­گران در بازارهای بورس نفت بوده و پیش­بینی قیمت­ها به عنوان یک امر ضروری وکاربردی مطرح می­شود ولیکن باید پیش­بینی را مورد توجه قرار داد که با دقت بیشتری صورت گیرد و نسبت به نتایج واقعی مشاهده شده خطای کمتری داشته باشد. به منظور پیش­بینی قیمت هفتگی نفت خام برنت به عنوان یک نفت شاخص با توجه به دشوار بودن شناسایی دقیق الگو­های خطی و...

full text

پیش بینی قیمت نفت خام اوپک با استفاده از مدل خودبازگشتی میانگین متحرک انباشته فازی

عوامل زیادی بر قیمت نفت خام تأثیر می­گذارند از این رو استفاده از یک مدل چند متغیری که تمام عوامل مؤثر بر قیمت نفت را لحاظ کرده باشد کاری دشوار است. به همین دلیل، پیش­بینی این متغیر از طریق مدل­های چند متغیری بسیار دشوار است. در این حالت ممکن است استفاده از مدل­های تک متغیری روش مناسبی باشد. در این مدل­ها از حافظه تاریخی متغیر برای مدل­سازی و پیش­بینی استفاده می­شود. اما یکی از محدودیت­های مدل­ه...

full text

پیش بینی قیمت تسویه در بازار برق: الگوریتم ماشین بردار پشتیبان بهبودیافته

با تشکیل بازار برق ایران در سال 1382، تولیدکنندگان انرژی با ثبت پیشنهاد قیمت خود به‌صورت روزانه در سامانه مدیریت شبکه، با یکدیگر به رقابت می‌پردازند.در این رقابت تنها تولیدکنندگانی پیروز هستند که قیمت پیشنهادی آن‌ها پایین‌تر از قیمت تسویه بازار در ساعات روز بعد باشد، ازاین‌رو پیش‌بینی قیمت تسویه بازار در روز بعد برای تولیدکنندگان انرژی امری حیاتی بوده و در کسب هر چه بیشتر سهم بازار برق ایران به...

full text

پیش بینی قیمت روزانه نفت خام برنت با ترکیب روش های آنالیز مؤلفه های اصلی و رگرسیون بردار پشتیبان

پیش­بینی روند قیمت نفت خام و نوسانات آن همواره یکی از چالش­های پیش روی معامله­گران در بازارهای نفتی بوده است. این مقاله به پیش­بینی قیمت روزانه نفت خام برنت با یک مدل ترکیبی پیشنهادی می­پردازد. نمونه آماری قیمت روزانه نفت خام برنت دریای شمال از ژوئیه سال 2008 تا ژوئیه سال 2016 می­باشد که از میان کل قیمت­های روزانه نفت در تمام بازارهای نفتی انتخاب شده است. در این پژوهش، برای پیش­بینی مدلی از ترک...

full text

توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی

درماندگی مالی پیش از ورشکستگی مالی رخ می‌دهد و پیش بینی موثر آن یک مسئله‌ی مهم و چالش برانگیز برای شرکت‌ها می‌باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می‌پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن‌ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...

full text

My Resources

Save resource for easier access later


Journal title:
دانش سرمایه گذاری

جلد ۴، شماره ۱۴، صفحات ۱۴۵-۱۶۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023